
Joza: Hybrid Taint Inference for Defeating
Web Application SQL Injection Attacks

Abbas Naderi-Afooshteh∗, Anh Nguyen-Tuong†, Mandana Bagheri-Marzijarani‡, Jason D. Hiser§, Jack W. Davidson¶
Department of Computer Science

University of Virginia, Charlottesville, US
e-mail: ∗abiusx@virginia.edu, †an7s@virginia.edu, ‡mb3wz@virginia.edu, §dh8d@virginia.edu, ¶jwd@virginia.edu

Abstract—Despite years of research on taint-tracking tech-
niques to detect SQL injection attacks, taint tracking is rarely
used in practice because it suffers from high performance
overhead, intrusive instrumentation, and other deployment is-
sues. Taint inference techniques address these shortcomings by
obviating the need to track the flow of data during program
execution by inferring markings based on either the program’s
input (negative taint inference), or the program itself (positive
taint inference). We show that existing taint inference techniques
are insecure by developing new attacks that exploit inherent
weaknesses of the inferencing process. To address these exposed
weaknesses, we developed Joza, a novel hybrid taint inference
approach that exploits the complementary nature of negative and
positive taint inference to mitigate their respective weaknesses.
Our evaluation shows that Joza prevents real-world SQL injec-
tion attacks, exhibits no false positives, incurs low performance
overhead (4%), and is easy to deploy.

I. INTRODUCTION

Despite increasing awareness of security issues in recent
years [34], widely-used Web applications remain vulnerable
to SQL injections and other common attacks [35], [38]. The
impact of such attacks is severe and can lead to full server
takeovers [38]. SQL injections have consistently ranked on top
of various lists, e.g., #1 on MITRE’s 2011 CWE/SANS list of
Top 25 Most Dangerous Software Errors [17], and #1 or #2 on
OWASP Top 10 Web Application Vulnerabilities for 2007 [34],
2010 [39] and 2013 [38]. Proposed solutions primarily rely
on developer awareness of secure coding practices (such as
prepared statements and sanitizing inputs), but these practices
are routinely ignored or exercised incorrectly. Furthermore,
these best practices are rarely retrofitted to the ever-growing
base of existing legacy code.

Compounding this problem, popular Web frameworks such
as WordPress actively encourage their developer community to
extend the base framework with new functionality via a plugin
architecture. While the core frameworks are heavily scrutinized
and employ best coding practices, the quality of plugins varies
widely. Attesting to the low quality of plugins, we collected 50
vulnerable Wordpress plugins. Using a range of SQL injection
attacks, we then harvested and adapted a working exploit for
each plugin [2].

A well-explored technique for detecting SQL injection
attacks is negative run-time taint-tracking, where untrusted
data is annotated with taint markings and these markings are
maintained as data flows through an application [21], [26], [9],
[7], [23], [14]. Security-critical commands in the application

can then be checked for the presence of tainted commands,
which, if present, indicates a potential attack. Another form
of taint-tracking is that of positive taint-tracking, in which
taint markings are associated with data that originate from
within a program, and are therefore trusted [12], [13]. In
this case, a security-critical command that is not marked
as positively tainted indicates an attack is being attempted.
Figure 1 illustrates the complementary nature of using negative
and positive taint to detect attacks. In the figure, - indicates
negative taint markings (untrusted), + indicates positive taint
markings (trusted), and c indicates critical SQL tokens obtained
by parsing the command.

Despite the security effectiveness of taint-tracking techniques,
they are rarely deployed. For PHP, our target language,
solutions that provide good performance (in the 10% range)
require administrator privileges to install custom interpreters
or extensions [21], [26], [29], [14]. Further, PHP continues to
evolve at a rapid pace, which makes adopting taint-tracking
extensions a risky business proposition as these extensions
will invariably fall behind releases of the main distribution.
Solutions that manage the propagation of taint information at
the source code level, e.g., directly in PHP, incur high overhead
(in the 200% range) [23].

A low-overhead, emergent alternative approach to taint
tracking is taint inference. Taint inference techniques seek
to infer taint markings, obviating the need for the complex ma-
chinery and modeling required to propagate and maintain taint
information [28], [22]. Analogously to taint-tracking techniques,
taint inference techniques are categorized as negative [28] or
positive [22] depending on whether they seek to infer taint
markings for untrusted data (negative taint) or trusted data
(positive taint) (Figure 1).

The potential disadvantage of taint inference is that it is
susceptible to false negatives, i.e., missed attack detection, due
to the inherent imprecision in the inference process (Section
3). The key insight underlying our approach is that a hybrid
taint inference model that exploits the complementary nature of
negative and positive taint techniques results in a much more
secure system than using either inference technique in isolation
while simultaneously mitigating their respective weaknesses.

The primary contributions of this paper are:
• A convincing demonstration that neither negative taint

inference nor positive taint inference is adequately secure.
Using novel but straightforward techniques we success-

1

INPUT : 1' OR 1='1
SQL QUERY: SELECT * FROM users WHERE Username='1' OR 1='1' AND Password='foo'
NEGATIVE : ----------
POSITIVE : ++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++
STRUCTURE: cccccc cccc ccccc c cc c ccc c

Fig. 1: Negative and positive taint markings for a SQL query. An attack is detected when a critical part of the query structure
is negatively tainted, or when it is not positively tainted. Note that attack detection is orthogonal to whether the taint markings
are obtained via traditional taint-tracking techniques or via taint inference.

fully mutated 51 out of 53 real-world exploits to bypass
negative taint inference. For positive taint inference we
developed an automated evasion tool to adapt 14 out of
53 real-world exploits to bypass positive taint inference.

• The development of a novel hybrid taint inference model
that synergistically combines negative and positive taint
inference, resulting in a more secure system than either.
Attacks that evade negative taint inference are detected
by positive taint inference, and vice-versa.

• A comprehensive evaluation of a hybrid taint inference
prototype called Joza.1 We show that Joza incurs less than
5% overhead, with no false positives, is easy to deploy,
and thwarts a wide range of SQL injection attack types,
including 53 instances of novel attacks designed to bypass
positive or negative taint inferencing.

• The development of WP-SQLI-LAB [2], an open-source
fully-automated SQL injection test suite.

The rest of this paper is organized as follows. The threat
model is presented in Section II. Section III describes the hybrid
taint inferencing model, discusses positive and negative taint
inference techniques, including their complementary strengths
and weaknesses in detail. Section IV presents a high-level
architecture of Joza and its deployment model. We present
the security evaluation in Section V, followed by performance
evaluation in Section VI. Section VII discusses related work,
while Section VIII provides concluding remarks.

II. THREAT MODEL

Our threat model assumes software is intended to be benign,
but likely contains flaws. The program, when run, accepts
untrusted input, possibly from many sources such as files,
environment variables, HTTP request bodies, HTTP request
headers, databases and others. The input is then used to create
SQL queries that are issued to the database. Most inputs to the
program are benign and cause the queries to behave as intended,
but malicious inputs may exploit the program to violate the
security policy intended for the SQL queries. An SQL injection
occurs when attacker-controlled inputs are interpreted as SQL
keywords, built-in functions, or delimiters, or when they change
the programmer-intended syntactic structure of a command [36],
[28].

1Joza is the Persian/Arabic equivalent of the Gemini zodiac constellation,
which is Latin for twins.

We considered using a strict definition of SQL injection
attacks such as the one defined by Ray and Ligatti [27], [29].
Unfortunately, many programs, such as those that incorporate
advanced search functionality, would break as they allow field
and table names to be specified through user inputs [6], [30],
[31], [3]. We assume a more pragmatic stance, which permits
these common programming practices, but the techniques
presented can be easily adjusted to enforce a user’s desired
policy.

III. TAINT INFERENCE MODELS

To motivate the key insights underlying the Joza hybrid taint
inference model, we first present the strengths and weaknesses
of current negative and positive taint inference models.

A. Negative Taint Inference (NTI)

Negative taint inference (NTI) infers taint markings by
correlating application inputs with query strings [28]. The
pseudo-code for the NTI inference algorithm is as follows:

query q = intercept_query()
for each input source, S

for each input p, in S
diff_ratio = substring_distance(q, p)
if diff_ratio < threshold

mark_negative_taint(q, p)

NTI employs an approximate string matching algorithm
to make allowance for common and small string trans-
formations performed by an application, such as strip-
ping whitespace and performing case-conversions. Function
substring_distance computes a difference ratio which
is the string distance between an input and a query divided by
the length of the matched query substring. A difference ratio of
zero means that the input string appears unchanged inside the
query. If the diff_ratio is below a threshold the algorithm
infers that a match has occurred. As will be discussed shortly,
selecting a proper threshold is not straightforward.

Finding the minimum substring distance is a computationally
expensive algorithm. In its simplest form, every substring of
the query is compared to the input using the Levenshtein edit-
distance algorithm [15]. This simple form has a computational
cost of O

(
n2 ×m2

)
where n is the length of the input

parameter and m is length of the query. The running time
of the algorithm is O

(
l × n2 ×m2

)
where l is the number of

input parameters. This algorithm is impractical for long queries

2

INPUT: http://example.com/show_record.php?id=380
QUERY: SELECT * FROM records WHERE ID=380 LIMIT 5
NTI MARKING: ---
STRUCTURE: cccccc cccc ccccc c ccccc

A

B

C

INPUT: http://example.com/show_record.php?id=-1 OR 1=1
QUERY: SELECT * FROM records WHERE ID=-1 OR 1=1 LIMIT 5
NTI MARKING: ---------
STRUCTURE: cccccc cccc ccccc c cc c ccccc

INPUT: http://example.com/show_record.php?id=-1/*'''''*/OR 1=1
QUERY: SELECT * FROM records WHERE ID=-1/*\'\'\'\'\'*/OR 1=1 LIMIT 5
NTI MARKING:
STRUCTURE: cccccc cccc ccccc c cccccccccccccccc c ccccc

Fig. 2: NTI Markings. Part A: benign input, Part B: malicious input (attack detected), Part C: evasive input (attack undetected).

composed of large user inputs, such as when a user posts a
multi-page blog entry or uploads a file, or when a visitor posts
a sizable comment.

Numerous optimizations exist for this algorithm, such
as computing distances using dynamic programming and
using heuristics to skip implausible comparisons [28]. The
optimizations used in Joza’s NTI component are explained in
the performance evaluation (Section VI).

Figure 2 shows the taint markings inferred for various inputs
sent to a vulnerable application. In part A of Figure 2, the
query is deemed safe as no critical token has been marked
as negatively tainted. Part B of Figure 2 illustrates how NTI
detects an attack. NTI infers that -1 OR 1 = 1 is negatively
tainted as it precisely matches the value of the input parameter
id. Because the critical tokens OR and = are tainted, NTI
detects a potential attack.

1) Strengths:
Low Overhead and Low Implementation Complexity. NTI
performs well when there is a strong correspondence between
application inputs and queries. NTI has negligible memory and
processor footprint for small inputs and queries, and only needs
to be computed when input is provided to the application [28].

2) Weaknesses:
Sensitivity to Threshold Value. As previously noted, NTI
uses an approximate string matching algorithm to allow for
transformations of the input. The sensitivity of the string
matching algorithm is tuned by specifying a threshold value
that is proportionally related to the edit distance between an
input value and its match in the query string. Setting the
threshold value too high yields the inference of too many
taint markings, which causes false positives. On the other
hand, setting the threshold value too low yields too few taint
markings, which causes false negatives. Selecting an optimum
threshold value for an application or across a set of applications
is not straightforward.

Evasion via Application-level Transformations. Any input
transformation applied inside an application can potentially
result in the bypass of NTI as it breaks the correspondence
between inputs and query strings. For example, a common data
transformation is to use a Base64 encoding where binary data

is converted to human-readable characters for transfer over
ASCII-based protocols.

Most web applications apply some form of input manipula-
tion for the purpose of validation, sanitization or normalization.
For example, Wordpress enforces Magic Quotes, a deprecated
PHP facility that escapes quotes, backslashes and double quotes
with additional backslashes. Wordpress also trims whitespace
from input provided by authenticated users.

For applications that perform similar transformations to
Wordpress, an attacker can craft an injection payload that
includes a comment block, inside of which an arbitrary number
of special characters (e.g., quotes in the case of Wordpress)
can be added. The web application will then transform and
include these escaped quotes in a comment block inside the
SQL query, resulting in a higher string edit distance than
the specified threshold, effectively bypassing negative taint
inference.

An attacker can also leverage whitespace trimming (a
common operation) by appending an arbitrary number of
whitespaces, and rely on the fact that these whitespaces will
be removed by the web application. Again, the net effect is a
higher string edit distance than the specified threshold. Note
that evasions can be done via any transformation of input
inside the application code, and are not limited to the examples
discussed here.

Part C of Figure 2 illustrates NTI evasion. The edit distance
between the input and the matched portion of the output is five
(the number of backslashes added by magic quotes). Dividing
by the length of the entire matched portion (22) yields a 22.7%
difference ratio, which is not small enough to cause a match
for a threshold of 20%. An adversary evades NTI by adding
enough quotes to drive the difference ratio higher than the
threshold value.

Payload Construction. Concatenation of two or more inputs
by an application enables attackers to construct an attack
payload that potentially evades NTI. The following PHP code
and sample input demonstrate this attack:

$input=$_GET[’q1’].$_GET[’q2’].$_GET[’q3’];
$query="SELECT * FROM data WHERE ID=".$input;

3

QUERY: SELECT * FROM records WHERE ID=380 LIMIT 5
PTI MARKING: +++++++++++++++++++++++++++++++ ++++++++
STRUCTURE: cccccc cccc ccccc c ccccc

A

B

C
QUERY: SELECT * FROM records WHERE ID=-1 OR 1=1 LIMIT 5
PTI MARKING: +++++++++++++++++++++++++++++++ ++ + ++++++++
STRUCTURE: cccccc cccc ccccc c cc c ccccc

QUERY: SELECT * FROM records WHERE ID=-1 UNION SELECT username() LIMIT 5
PTI MARKING: +++++++++++++++++++++++++++++++ ++++++++
STRUCTURE: cccccc cccc ccccc c ccccc cccccc cccccccccc ccccc

Fig. 3: PTI Markings. Part A: benign input, Part B: malicious input (attack detected), Part C: malicious input (attack undetected).

Input: q1=1 O q2=R TR q3=UE
Query: SELECT * FROM data WHERE ID=1 OR TRUE

Note that taint markings inferred from different inputs cannot
be combined to detect an attack as it would introduce too many
false positives. For example, by combining common one letter
inputs such as O and R, all queries containing the word OR
would be incorrectly inferred as negatively tainted. Also to
alleviate false positives that would result from matching very
short inputs (such as single letters), NTI detects an attack only
if an input matches at least one whole SQL token.

B. Positive Taint Inference (PTI)

In contrast to negative taint inference, positive taint inference
(PTI) infers the parts of a SQL query string that should be
trusted. The PTI technique works by reconstructing security-
critical commands using string fragments extracted from the
program. PTI was successfully used previously to thwart OS
command injection attacks [22]. We generalize this work and
adapt PTI to cover SQL injections for web applications.

The PTI inference process is conceptually simple and is
shown with the following pseudo-code:

Let F be the set of string fragments
extracted from program P

query q = intercept_query()
for each string fragment f in F
for each position, i, in q
if f == q[i..i+len(f)]
mark_positive_taint(q[i..i+len(f)]);

The set of string fragments, F, is extracted by processing the
application and all plugins to identify string literals contained
in the application.

As shown, this algorithm is computationally expensive,
running in O

(
n×m2

)
where n is the number of fragments

and m is the length of the query. Section VI-A describes
optimizations to speed up the inference process.

Consider the following vulnerable PHP program:

$postid=$_GET[’id’];
$query = "SELECT * FROM records WHERE ID=" .

$postid;
$query = $query . " LIMIT 5";
$result = mysql_query($query);

For this example, the string fragment extraction process
yields the following fragments:

id
SELECT * FROM records WHERE ID=
LIMIT 5

Note that the space before LIMIT 5 is part of the fragment
extracted from the program and can be important in the
matching process.

Figure 3 illustrates positive taint markings (denoted with +).
In part A of Figure 3, the query is deemed safe as all critical
tokens are positively tainted. Part B of Figure 3 illustrates
the case when an attack payload such as -1 UNION SELECT
username() is the application input. This payload extracts the
database username, but is detected by PTI because three critical
tokens (UNION, SELECT and username()) are not marked
as positively tainted.

To prevent attackers from combining fragments to form a
critical token, PTI requires that critical tokens be fully contained
within a single fragment. For example, PTI does not allow the
critical token OR to be created by combining the single-letter
fragments O and R. Additionally, PTI treats SQL comments as
one critical token and requires that comments be fully contained
in one fragment.

1) PTI Strengths:
Input-Independence. A distinguishing feature of positive
tainting techniques in general is that the process of obtaining
the taint markings is intrinsic to a program. This process is not
affected by external input and therefore is not subject to control
by an adversary [12], [13], [22]. To reinforce this key point,
note that the algorithm used by PTI to infer taint markings
for a query depends only on string fragments extracted from
the program. Independence from external inputs means that
PTI is immune to issues that plague negative taint-tracking
techniques, e.g., correctly identifying all sources of untrusted
data, correctly propagating taint markings throughout execution
of a program, and precisely modeling complex string functions
such as regular expressions replacement functions.2

PTI is resistant to second order attacks, such as when the
injection payload is cached into a file, and then retrieved by
the application and fed into a query. PTI is also resistant to

2For example, Diglossia [29], PHPrevent [21] and the PHP taint-tracking
extension [14] do not model functions such as preg_replace precisely.

4

A

B

INPUT : http://example.com/show_record.php?id=-1 OR 1=1
QUERY : SELECT * FROM records WHERE ID=-1 OR 1=1 LIMIT 5
NTI MARKING: ---------
PTI MARKING: +++++++++++++++++++++++++++++++ ++ + ++++++++
STRUCTURE : cccccc cccc ccccc c cc c ccccc

INPUT : http://example.com/show_record.php?id=-1/*'''''*/OR 1=1
QUERY : SELECT * FROM records WHERE ID=-1/*\'\'\'\'\'*/OR 1=1 LIMIT 5
NTI MARKING:
PTI MARKING: +++++++++++++++++++++++++++++++ ++ + ++++++++
STRUCTURE : cccccc cccc ccccc c cccccccccccccccc c ccccc

Fig. 4: Part A: Attack that is undetected by PTI but is detected by NTI, Part B: Attack that is undetected by NTI, but is
detected by PTI.

mixed input-source attacks, such as when an injection payload
is constructed inside the application by concatenating harmless
inputs from different sources. Furthermore, input-independence
enables extensive use of caching for performance optimization,
since a query can be analyzed once and the analysis result
cached indefinitely.

Encoding-Resistance. Encodings performed by the database
engine and application logic are frequent in web applications.
For example many web applications store encoded or encrypted
data in cookies, sessions and databases for subsequent use.
Firewalls and intrusion detection systems typically operate on
user-input at the network level and have no visibility into the
actual value of these inputs. PTI can access the original data,
because the data is eventually decoded and used in a SQL
query.

2) PTI Weaknesses:
Application-dependent Attack Surface. The set of extracted
string fragments forms the vocabulary with which an attacker
can craft an exploit. For example, in part C of Figure 3, the
attacker-supplied input, 1 OR 1 = 1, would erroneously be
deemed safe if the program contained both the string fragments
OR and =. In general, longer attack payloads that require
multiple critical tokens have a higher probability of detection
than shorter attacks.

C. Hybrid Taint Inference Model

The complementary nature of negative and positive taint
inference techniques is concretely illustrated in the examples
of Figure 4. Part A of Figure 4 shows an attack payload that
is undetected by PTI but detected by NTI. Conversely, part B
of Figure 4 shows an attack payload that is undetected by NTI
but detected by PTI.

PTI is susceptible to short attack payloads built with only
a few critical tokens. These payloads are likely intercepted
by NTI, since they are of short length and appear mostly
unchanged in the output. NTI is susceptible to long payloads
constructed by leveraging application-specific transformations.
These payloads are typically intercepted by PTI since they are
composed of a large number of critical tokens or use large
blocks filled with transformable data (such as whitespaces or
comments).

To exploit the complementary nature of PTI and NTI, we
combine them in one system so that even attacks explicitly
designed to bypass one, will be detected by the other. If either
algorithm detects an attack, an attack is reported. If neither
technique detects an attack, no attack is reported. Thus, the
combination mitigates the security weakness of each individual
technique.

Combining NTI and PTI in a hybrid model also means
composing false positive rates and overhead rates. Previous
studies of NTI and PTI have shown performance overhead
rates to be less than 5% with no false positives [28], [22].
Sections V and VI experimentally demonstrate that Joza, our
system that implements a hybrid NTI and PTI model, retains
favorable performance characteristics without incurring false
positives.

IV. JOZA SYSTEM

Figure 5 provides an architectural overview of the Joza
system. Joza consists of two major analyses components, PTI
Analysis and NTI Analysis. The PTI Analysis component
implements the positive taint inference algorithm, whereas
the NTI component implements the negative taint inference
algorithm. All commands intended for the backend database
management system (DBMS) are intercepted and first sent to
the PTI Analysis component, and then to the NTI Analysis
component before being allowed to proceed to the DBMS.

A. Installation

Joza is initially installed by adding the preprocessing
component to the entry point of a web application. In the
case of Wordpress, this step can be done by placing Joza in the
plugins directory of Wordpress and configuring the Wordpress
plugin manager to run Joza automatically on every request.

A web application in PHP is typically a collection of PHP
source code files residing in one top-level directory and several
subdirectories. Joza recursively parses all source code files
reachable from the top directory and extracts string literals
from each file to form the final set of string fragments. These
fragments will subsequently be used by the PTI Analysis
component. In the case of format strings or other strings with
placeholders, Joza breaks them down into multiple fragments.

5

PTI Analysis

Web Application
(Automatically Protected)

Pr
e-

Pr
oc

es
sin

g

PT
I

Qu
er

y
Ca

ch
e

DB
M

S

HTTP Request

NT
I

An
aly

sis
 n-th Query

1st Query

String Fragments
PTI Daemon
Structure Cache

Fig. 5: Joza Architecture

For example, the string ”SELECT * from users where
id = $id and password=$password” would be bro-
ken down into two fragments:

SELECT * from users where id =
and password=

Note that only fragments that contain at least one valid SQL
token need to be retained.

To intercept queries, the installation process wraps all
standard PHP functions and classes that interact with backend
databases, e.g., mysql* and PDO*. These wrappers are
implemented using a source-level transformation to replace
all calls to database functions with calls to equivalent Joza
wrappers.

B. Preprocessing

The preprocessing component defines Joza wrappers and
stores a copy of all inputs to the web application to preserve
them for NTI analysis. This step is required as many web
applications modify user-input before it reaches NTI analysis.
The preprocessing component also invokes the installer when-
ever new or modified files are found in the application (e.g
when the application is updated or a new plugin is installed),
to keep the set of string fragments complete and enable Joza
to intercept all queries sent to the database by the application.

C. PTI Analysis Component

The PTI Analysis component sends intercepted queries to a
PTI daemon. The daemon performs two primary functions. The
first is to parse intercepted queries to extract critical tokens and
keywords. The second is to infer which parts of the intercepted
query should be trusted using the PTI algorithm described
in Section III-B, and return whether the query is deemed
safe or not. As an optimization, the PTI Analysis component
maintains a query cache to store safe queries. For applications
such as Wordpress with a workload heavily-skewed towards
reads, this caching mechanism dramatically boosts performance
(Section VI).

1) PTI Daemon: The PTI Daemon is a native binary
application that loads the PTI dynamic library as well as the
string fragments into memory, connects to the web application
and waits for incoming queries. Once a query arrives, its

structure and the result of its taint analysis is communicated
back to the web application. Multiple daemon processes can
coexist together. The lifetime of a single daemon instance can
range from a single web application instance (comprising of
multiple database queries) to hours.

The daemon is launched on demand (as a binary process)
by the PHP application and communicates with the PHP
application using named or anonymous pipes. In its shortest
lifespan, the daemon lives for the duration of one web request,
communicating via anonymous pipes and terminating alongside
the application. To allow longer lifetimes, the daemon is
launched independently of the launching web application
(e.g. using nohup) and communicates to the web application
instances using named pipes.

To improve performance, the daemon also includes a
query structure cache which caches abstract syntax trees of
parsed queries without storing contents of data nodes. This
optimization is discussed in more detail in Section VI.

2) PTI Query Cache: The PTI query cache uses an in-
memory hashtable in the backend database to cache the PTI
analysis result of a query (i.e whether the query is safe
or not). Because many queries of a web application are
constant and do not rely on any user-input, caching improves
performance significantly without noticeably increasing the
memory footprint of the daemon.

D. NTI Analysis Component

To implement the NTI algorithm described in Section III-A,
Joza must first make a copy of all inputs including cookies
contained in HTTP headers, as well as HTTP GET and POST
values. While computing the necessary substring distance
between inputs and the intercepted query can be expensive, PHP
directly supports this computation using a built-in Levenshtein
edit-distance algorithm [15]. Once the negative taint markings
have been inferred, the NTI Analysis Component reuses the
critical tokens and keywords previously obtained by the PTI
Daemon, and can then determine whether a query is safe.

E. Attack recovery

A query is safe if and only if both PTI and NTI components
deem the query safe. When an attack is detected, Joza supports
two recovery policies: error virtualization and termination. The

6

error virtualization policy returns an error code as if the query
had failed and relies on the application logic to handle this
error gracefully. The termination policy forces the application
to exit. The default Joza policy is to assume a conservative
security posture; Joza uses termination, which typically results
in a blank HTML page returned to the end user.

F. Architecture Rationale

The twin requirements for Joza to exhibit low overhead and
be easy-to-deploy, i.e., without requiring administrator privi-
leges, motivate our decision to implement the PTI algorithm as
a user daemon. Two alternative designs for the PTI algorithm
are PHP extensions and a pure PHP implementation.

A PHP extension is a native library linked against a specific
version of PHP headers and is not compatible with other
PHP versions, and would therefore require the PTI daemon
to be updated as frequently as the PHP interpreter. Loading
or installing PHP extensions requires administrative privileges,
which is impractical in many deployment scenarios, e.g., shared
hosting environments.

A pure PHP implementation of a SQL parser and the PTI
algorithm was also tested, but rejected, as the resulting overhead
ranged from 20% to 200%.

As for NTI, moving the analysis to the daemon would not
benefit performance, because NTI requires all inputs of the
application and communicating them to the daemon would
incur more overhead than the performance gain, especially
when processing sizable inputs (such as file uploads).

V. SECURITY EVALUATION

To evaluate Joza’s security, we created WP-SQLI-LAB, an
open-source security testbed consisting of a recent Wordpress
version (v3.8) packaged with 50 plugins publicly reported
to be vulnerable to SQL injection attacks [2]. The plugins
represent a diverse set of applications, including social media, e-
commerce, image galleries and forums. Exploits were obtained
from various public sources, including CVE reports, security
research blogs and other security-related websites.

Attack Type NO. of Plugins
Union Based 15
Standard Blind 17
Double Blind 14
Tautology 4

TABLE I: Classification of WP-SQLI-LAB attack types

Table I lists the type of exploits collected and their frequency
in the testbed. A union-based exploit allows attackers to replace
the expected result of a query with a data record obtained by
a query of their choosing. This type of exploit allows easy
extraction of any information from the database. A standard-
blind exploit returns errors if the query returns no results, and
valid results otherwise. This type of exploit allows an attacker
to extract desired data by binary searching each character
using conditional payloads generated by automated tools (such
as SQLMap) or manually. Double-blind exploits seek to
determine the validity of an injected payload by observing

the application’s response time. With a judicious choice of
payload, a double-blind exploit can leak vital information
such as passwords. Again, typical attacks using this exploit
are carried out using a binary search to leak data one valid
character at a time. Tautologies such as 1 OR 1=1 can result
in the leakage of information or bypassing of authentication
code.

A. NTI and PTI Evaluation

The goal of our first experiment was to evaluate the
effectiveness of NTI and PTI individually using our testbed. To
the best of our abilities, we developed exploits for the testbed
without consideration for either NTI or PTI.

As shown in Table II, the NTI component detected 49 out
of the 50 original exploits. (NTI failed to detect an attack in
a plugin that used a Base64 encoding of its inputs.) The PTI
component detected all 50 original exploits. These results
corroborate the effectiveness of taint inference techniques
previously reported [28], [22].

To further evaluate the effectiveness of NTI and PTI, we
used a powerful penetration tool (SQLMap [10]) on four of the
50 plugins. The four plugins were selected such that each of
the exploit types in Table I was present. On average, SQLMap
generated 40 valid attack payloads for each plugin. Both NTI
and PTI detected all attack variants.

Exploits NTI PTI
Testbed 49/50 50/50
Generated by SQLMap 160/160 160/160

TABLE II: Baseline effectiveness of NTI and PTI

Fragment
UNION
AND
OR
SELECT
CHAR
,
#
- -
;
/* */
)

(
GROUP BY
ORDER BY
CAST
WHERE 1
INSERT
INSERT INTO
=
users WHERE ID =
:-)
)))
”>?
To:
∗
<iframe
tail -c
<td rowspan=

TABLE III: Sam-
ple fragments in
Wordpress

The results in Table II were encouraging
as both NTI and PTI defeated almost 100%
of the attacks. However, a sophisticated
attacker would actively seek to take ad-
vantage of the weaknesses identified in
Section III. In the next set of experiments,
we explored the design space of attacks
targeted explicitly to evade either NTI or
PTI.

NTI Evasion. Since NTI is susceptible
to application-induced transformations, we
leveraged the Wordpress implementation
of magic quotes (magic quote adds an
extra backslash for every quote).

We mutated the original attacks by in-
corporating comment blocks that included
quotes. Regardless of the threshold used by
NTI for determining a match, an attacker
can evade NTI by simply adding enough
quotes to ensure that the attack input is
above the threshold. Thus, changing the
sensitivity threshold used by NTI would
not be an effective remedy. Figure 6C
shows such an attack. This novel evasion
approach resulted in the complete bypass
of NTI.

7

A. SELECT * FROM wp_proplayer WHERE (POST_ID='-1') union all select NULL,NULL,char('65')

B. SELECT * FROM wp_proplayer WHERE (POST_ID='-1') UNION SELECT 1,2,CHAR('65')

C. SELECT * FROM wp_proplayer WHERE (POST_ID='-1') union/*\'\'…\'*/all select NULL,NULL,char('65')

D. SELECT * FROM wp_proplayer WHERE (POST_ID='-1') UNION/*\'\'…\'*/SELECT 1,2,CHAR('65')

Fig. 6: Real-world exploit for one of WP-SQLI-LAB vulnerabilities. Part A shows the original exploit, part B shows the exploit
mutated using Taintless to bypass PTI, part C shows the exploit adapted for NTI evasion and part D depicts the mixture of PTI
and NTI evasions in the exploit.

PTI Evasion. To exploit the application-dependent attack
surface of PTI, we created Taintless [1], an automated evasion
tool that reconstructs attack payloads using string fragments
available in an application. Taintless replaces certain SQL
tokens with their equivalents (e.g. UNION with UNION ALL,
CHAR with string literals), matches the letter case of attack
tokens with those available in the application, removes those
tokens not found inside the application that can be safely
removed from the attack payload, and also matches the type and
number of whitespaces with those available in the application.

Using Taintless, we succesfully adapted 13 out of 50 exploits
in the testbed to evade PTI detection. Figure 6B shows one of
these adapted exploits.

Table III lists example fragments extracted from Wordpress
and the 50 plugins. Since these fragments include OR and
= (among many SQL tokens), PTI does not detect an attack
with a payload of OR 1 = 1. To understand how common
simple injection payloads are in real-world applications, we
analyzed 100 recently reported SQL injection vulnerabilities
(containing exploit codes) listed by MITRE CVE from 2012 to
2014. Of these only 4 were tautologies (vulnerable to simple
payloads) [20].

B. Hybrid Model Evaluation

The previous section evaluated the security of NTI and
PTI individually. We now evaluate Joza, a system where both
NTI and PTI are combined. Joza detects all attacks in the
testbed, even attacks successfully adapted to evade NTI and
PTI (Table IV).

One such attack is shown in Figure 6. Part A of the figure
shows the original exploit in the resulting query, while parts B
and C display adaptations to bypass PTI and NTI respectively.
Part D shows an unsuccessful attempt at evading both taint
inference techniques in a single exploit as each technique
detects the adaptation used to bypass the other.

In general, the Joza PTI component stops the practice of
using NTI evasion in an attack payload, as PTI requires that
the entire evasion block originate from a single fragment. On
the other hand, the susceptibility of PTI to malicious payloads
that contain a small number of critical tokens available in the
application is compensated by NTI.

Joza’s hybrid taint inference algorithm dramatically raises
the bar for mounting a successful SQL injection attack. To

evade Joza one must construct an attack that evades both NTI
and PTI. An example would be an attack against a plugin
where NTI fails to detect the attack because the string distance
is too high, and PTI also fails to detect the attack because the
attack uses fragments previously extracted from Wordpress and
the plugins. Despite our best efforts, we have not been able to
create such an attack against the 50 plugins in our testbed.

To further demonstrate the effectiveness of our approach, we
used Joza to protect Drupal, Joomla and osCommerce, popular
applications with well-known, recently reported vulnerabilities.

The Drupal vulnerability [19] is based on encoded user-input
used to construct prepared statements in the web application.
Prepared statements are used to prevent SQL injection attack by
sending the query to be prepared by the database engine first,
and then separately sending user data to the database engine
to be used in named or anonymous placeholders defined in the
prepared query. Use of prepared statements would remove the
attackers’ ability to modify a query, and any input provided by
an attacker would be treated as data by the backend database.
Unfortunately, prepared statements are not a panacea. In this
case, user input was used to construct the placeholder names
in the query sent to the database to be prepared, allowing an
attacker to provide carefully crafted input to modify the original
command to the database, regardless of the data parameters.

Joomla was vulnerable to a very complicated double blind
SQL injection attack which used encoded input to instantiate
an object of a particular class inside the application [18]. This
object would construct an SQL query based on its member
variables (which could be overridden by the attacker), and
execute the query on destruction.

osCommerce was susceptible to a tautology attack that
extracted sensitive information from the database [8].

PTI or NTI were not sufficient to detect all three of these
attacks on popular highly scrutinized web applications, but
Joza successfully detected and prevented them.

False Positives. To evaluate false positives, we developed
a script to perform a full crawl of the Wordpress application
testbed, including posting random comments and performing
random searches. We also manually clicked through various
parts of Wordpress and did not uncover any false positives. We
ran SQLMap on Wordpress configured with the plugins and
verified that all attacks detected by Joza were true positives,
i.e., valid attacks.

8

Plugin /
Application Version CVE/

OSVDB
SQL

Vulnerability

NTI
Original
Exploit

NTI
Mutated
Exploit

PTI
Original
Exploit

PTI
Mutated
Exploit

Joza

A to Z Category Listing 1.3 86069 Tautology Yes No Yes No Yes
AdRotate 3.6.6 2011-4671 Tautology No No Yes No Yes
Advertizer 1.0 Double Blind Yes No Yes Yes Yes

Ajax Gallery 3.0 Double Blind Yes No Yes Yes Yes
Allow PHP in posts and pages 2.0.0 Double Blind Yes No Yes Yes Yes

Community Events 1.2.1 75252 Union Based Yes No Yes No Yes
Contus HD FLV Player 1.3 74573 Tautology Yes No Yes No Yes

Count per Day 2.17 75598 Union Based Yes No Yes Yes Yes
Couponer 1.2 Union Based Yes No Yes Yes Yes

Crawl Rate Tracker 2.02 Blind Yes No Yes Yes Yes
Easy Contact Form Lite 1.0.7 Tautology Yes No Yes No Yes

Event Registration plugin 5.43 Blind Yes No Yes Yes Yes
Eventify 1.7.f 86245 Union Based Yes No Yes No Yes

Facebook Promotions 1.3.3 Double Blind Yes No Yes Yes Yes
File Groups 1.1.2 74572 Blind Yes No Yes Yes Yes

FireStorm Real Estate Plugin Union Based Yes No Yes No Yes
GD Star Rating 1.9.10 83466 Blind Yes No Yes Yes Yes

Global Content Blocks 1.2 74577 Double Blind Yes No Yes Yes Yes
iCopyright 1.1.4 Blind Yes No Yes Yes Yes
IP-Logger 3.0 Union Based Yes No Yes Yes Yes

Js-appointment 1.5 74804 Double Blind Yes No Yes Yes Yes
KNR Author List Widget 2.0.0 Blind Yes No Yes Yes Yes

Link Library 5.2.1 84579 Blind Yes No Yes Yes Yes
Media Library Categories 1.0.6 Union Based Yes No Yes Yes Yes

Mingle Forum 1.0.31 75791 Double Blind Yes No Yes Yes Yes
MM Duplicate 1.2 Blind Yes No Yes Yes Yes

MyStat 2.6 Double Blind Yes No Yes Yes Yes
OdiHost Newsletter 1.0 74575 Blind Yes No Yes Yes Yes

Paid Downloads 2.01 86247 Blind Yes No Yes Yes Yes
post highlights 2.2 Union Based Yes No Yes No Yes

Profiles 2.0.RC1 Blind Yes No Yes Yes Yes
ProPlayer 4.7.7 Union Based Yes No Yes No Yes

PureHTML 1.0.0 Double Blind Yes No Yes Yes Yes
SCORM Cloud 1.0.6.6 Double Blind Yes No Yes Yes Yes

SearchAutocomplete 1.0.8 Union Based Yes No Yes No Yes
SH Slideshow 3.1.4 74813 Blind Yes No Yes Yes Yes
Social Slider 5.6.5 74421 Blind Yes No Yes Yes Yes
UPM Polls 1.0.3 Union Based Yes No Yes No Yes

VideoWhisper Video Presentation 1.1 Double Blind Yes No Yes Yes Yes
Facebook Opengraph Meta Union Based Yes No Yes Yes Yes

Paypal Donation Plugin 74838 Blind Yes No Yes Yes Yes
WP Audio Gallery Playlist 0.12 Union Based Yes No Yes No Yes

WP Bannerize 2.8.7 76658 Blind Yes No Yes Yes Yes
WP DS FAQ 1.3.2 74574 Double Blind Yes No Yes Yes Yes

WP eCommerce 3.8.6 75590 Tautology Yes No Yes Yes Yes
WP FileBase 0.2.9 75308 Blind Yes No Yes Yes Yes

WP Forum Server 1.7.8 2012-6625 Union Based Yes No Yes No Yes
WP Menu Creator 1.1.7 74578 Double Blind Yes No Yes Yes Yes

yolink Search for WordPress 1.1.4 74832 Union Based Yes No Yes Yes Yes
Zotpress 4.4 Double Blind Yes No Yes Yes Yes

Joomla 3.0.1 2013-1453 Double Blind No No Yes Yes Yes
Drupal 7.31 2014-3704 Union Based Yes No Yes Yes Yes

osCommerce 2.3.3.4 103365 Tautology Yes No No No Yes

TABLE IV: Joza security effectiveness evaluated using original and mutated real-world exploits on the Wordpress testbed.
Joomla, Drupal and osCommerce were evaluated using only the original exploits.

9

VI. PERFORMANCE EVALUATION

The performance evaluation of Joza was carried out using
Wordpress, a popular content management system that powers
22% of the top 10 million websites [32] . All evaluations were
performed on a 4-core iMac using Mac OS X 10.10 with 24
GB RAM running at 2.9 GHz.

A. PTI Optimization

To measure the performance of the Joza PTI component,
we setup a fully functional Wordpress site populated with
1001 unique URLs. Crawling the entire website resulted in
approximately 20,000 SQL queries as Wordpress requires
multiple database queries to render a page.

Our initial implementation of PTI initiated a new process to
detect SQL injections. To make PTI fit for practical use, we
dramatically increased its performance by running PTI as a
daemon process and by performing two primary optimizations.
The first optimization was to use a most-recently-used caching
policy for fragments that match a query to take advantage of the
SQL query working set of a Web application [22]. The second
optimization was to first parse the query to determine the
critical set of tokens before attempting to match these tokens.
When coupled with the first optimization, benign queries are
therefore quickly matched, while malicious queries may require
scanning the entire set of fragments.

Se
co

nd
s

0

0.15

0.3

0.45

0.6

Optimized Daemon Unoptimized Binary

Wordpress Request PTI Fork/Exec
PTI Load DNA PTI Processing

�2

Fig. 7: Performance breakdown of optimized PTI daemon
compared to binary PTI on top of Wordpress core

Figure 7 illustrates Joza’s PTI performance breakdown
for a Wordpress request. The unoptimized version is clearly
dominated by PTI processing. The optimized daemon reduces
this processing time by 66%.

Original With
PTI

Exact
Cache

Structure
Cache

Read 0.2170 0.4440 0.2378 0.2255
Write 0.3319 0.8538 0.4441 0.3725

TABLE V: Average Read/Write time for a Wordpress request
with PTI (seconds).

Table V characterizes performance overhead based on
whether a Wordpress request is a read or a write request.
A typical read request is to read a Wordpress post, whereas
a write request might be to post a comment. Note that both
types of request may result in multiple database queries.

For read requests, the use of a query cache to store previous
PTI decisions, i.e., whether a given query has previously been
deemed safe, reduces overhead to less than 4%. For write
requests, the query cache also improves performance over the
non-cached version, but incurs 34% overhead. The reason a
Wordpress write request still benefits from caching is that
posting a comment results in multiple database queries, some
of which are database reads and so may have been cached.

Another caching mechanism was introduced to increase
performance of write and other dynamic queries. The query
structure cache caches the structure of the SQL query abstract-
syntax-tree without the content of data nodes. This caching
mechanism caches the safety result of all queries except those
dynamically generated inside the application (such as advanced
search). With this caching in place, write requests incur only
a 12% overhead.

To support Joza’s goal of ease-of-deployment, we deliber-
ately chose not to implement PTI as a direct PHP extension
as it would have required administrator privileges to install or
load. Our results estimate that implementing PTI as a PHP
extension would incur only 0.2% overhead for read requests
and 3.2% for write requests (as described in Section C).

B. NTI Optimization

A naive implementation of NTI’s string matching algorithm
would be too slow for practical use. Fortunately, previous work
provides several optimizations [33], [28]. Joza uses PHP’s
internal Levenshtein distance function for short inputs and
queries. As an internal PHP function, its implementation runs
at native speed instead of being emulated by the PHP interpreter.
When input or query length is larger than that supported by
PHP’s Levenshtein function, Joza uses an optimized Leven-
shtein function written in PHP that requires linear memory and
time.

C. Joza Overall Evaluation

Figure 8 displays the time spent on PTI and NTI for a full
site crawl (read), random comment posting (write) and random
searching. NTI and PTI overheads and the total overhead of
Joza can be observed in the figure for different types of requests.

The performance of Joza depends on the relative frequency
of reads vs. write requests. Table VI shows overhead for a
variety of workloads. A workload consisting of 10% writes
and 90% reads results in an overall overhead of 5%, whereas
a workload of 99% reads and 1% writes results in an overall
overhead of 4%.

We also estimate the cost of our design decision to implement
Joza completely at the user-level. This estimation is based
on not including daemon spawn and communication times
in the calculations. A Joza system implemented as a direct
PHP extension would incur only 1.7% overhead even with a

10

Se
co
nd
s

0

0.15

0.3

0.45

Read Write Search
Plain NTI PTI Joza Plain NTI PTI Joza Plain NTI PTI Joza

�1

Fig. 8: Comparison of read/write/search times with and without
Joza’s protection in Wordpress

workload consisting of 50% write requests, which would make
Joza well-suited for performance-critical deployment scenarios
with full administrative privileges.

Table VII lists the average number of new blog posts, pages,
comments and RPC posts (posts written or read via third
party applications) over the last five years, as well as the
average number of annual page views on all blogs hosted on
Wordpress.com [41], [40]. From these statistics, we compute
the typical read/write workload for Wordpress.com, the official
website for hosting Wordpress sites. On average, less than one
percent of all requests involve writes, which would result in
less than 4% overhead on average when protected by Joza.

Writes Reads Plain Time Protected Time Overhead
50% 50% 0.2744 0.2990 8.96%
10% 90% 0.2284 0.2402 5.16%
5% 95% 0.2227 0.2328 4.53%
1% 99% 0.2181 0.2269 4.03%

TABLE VI: Overhead of Joza on different workloads.

In practice, Joza’s overall performance would be further
improved by using content-caching engines. Heavily-trafficked
Wordpress sites often make use of such caches. With content-
caching enabled, only the first request to a URL results in the
execution of database queries to serve up the requested page.
Subsequent requests would be mostly served by retrieving a
static cached copy, thereby reducing the demand on Joza’s
processing time.

VII. RELATED WORK

The appeal of taint inference techniques is that they obviate
the need for propagating taint information during program
execution. Previous PTI work focused on defeating OS com-
mand injection attacks for x86 binaries [22]. The work reported
here widens the attack classes covered by PTI to include SQL
injection attacks targeted towards web applications.

The vast majority of work in taint tracking uses a form of
negative taint tracking, i.e. they track external (untrusted) data
as it flows through a program and check whether such data is

used in a security-sensitive operation [11], [21], [26], [9], [42],
[12], [13], [7]. Livshits provides an extensive review of dynamic
taint tracking projects [16] and their potential pitfalls, including
the difficulty of propagating taint markings across functions
correctly. For example, neither PHPrevent [21], nor the PHP
taint-tracking extension [14] model taint accurately across string
functions that support complex regular expression patterns, e.g.
preg_replace. Failure to model such functions accurately
can result in increased false negative or false positive rates.
Joza sidesteps this issue completely as it does not propagate
taint markings across functions.

While most taint-tracking approaches keep track of external
data, Halfond et al. use positive taint tracking to track internal
(trusted) data [12], [13]. The primary tradeoff is that positive
taint tracking potentially results in higher false positive rates
(breaking application functionality), whereas negative taint
tracking tilts towards higher false negatives (missing attacks).
Halfond advocates the use of positive taint tracking as it
provides a more conservative security posture.

CANDID and Diglossia detect command injections using
shadow computations instead of tracking taint information
directly. CANDID builds shadow query strings in which user
input is replaced with known non-attack strings such as a
sequence of ’a’ characters [4]. Any structural difference in the
parse tree of the real and shadow queries reveals an attack.
Diglossia uses a complementary approach to generate shadow
queries. Instead of transforming strings derived from external
inputs, Diglossia remaps strings that originate from within the
application into an alternative character set [29]. To detect an
attack, Diglossia checks that the parse trees are syntactically
isomorphic, and that all SQL code in the shadow parse tree
is encoded with the alternative character set. Since CANDID
and Diglossia seek to delineate data from code, they are also
subject to the complexity of modeling complex string functions.
For example, Diglossia does not model preg_replace().

Despite the large body of research with ample evidence
of the effectiveness of taint-tracking techniques in defending
web applications, taint-tracking is not widely deployed or
used. To the best of our knowledge, Perl and Ruby are the
only two major programming languages that provide built-in
support for dynamic taint tracking [24], [25]. One reason for
the lack of deployment is that propagating taint information
often requires changes to the underlying run-time system [21],
[26], [9], which hinders deployment as such changes typically
require administrator privileges. Another potential reason is
the perceived high cost of taint-tracking. While this perception
is true for some projects (e.g. 2.2X for the ASPIS project on
Wordpress [23]), others have reported average performance
overhead in the 10-15% range when measured against various
web application workloads [12], [13], [21], [26], [7].

SQLRand [5] uses randomization of critical SQL tokens to
implement an alternate and secret SQL instruction set. This
randomization is then reversed at run-time so that the database
processes the original query. Without knowledge of the key
used for randomization, an attacker cannot inject valid SQL
tokens. Weatherwax relaxes the SQLRand requirement that the

11

Posts Pages Comments RPC Views Total Dynamic Writes % Reads %
2014 40,537 6,789 50,341 5,767 14,426,095 103,434 0.71 99.29
2013 48,7281 84,409 668,469 74,257 144,777,605 1,314,417 0.90 99.10
2012 351,612 79,046 468,318 40,725 112,329,943 939,701 0.83 99.17
2011 176,507 56,033 147,738 32,928 79,614,461 413,206 0.52 99.48
2010 145,696 39,519 126,097 21,155 49,021,659 332,467 0.67 99.33

TABLE VII: Wordpress.com statistics, raw numbers are divided by 103

randomization key be kept secret by using redundant parallel
execution in such a manner that a SQL token valid in one
variant is guaranteed invalid in the other [37]. However, this
approach is subject to the same limitations as SQLRand in
that it requires the complete and accurate identification of all
SQL tokens, a process which is very difficult to automate, or
error-prone if done manually.

VIII. CONCLUSIONS

This paper has shown that taint inference techniques offer
many practical advantages including speed and ease of de-
ployment, but the individual security of these approaches is
weak. To address this weakness, we have developed a novel
hybrid taint inferencing approach that synergistically combines
the strengths of negative taint inference and positive taint
inference. To illustrate the power of the hybrid approach, a
prototype system, called Joza, was developed to automatically
protect PHP-based applications. This paper discusses the
architecture and implementation of Joza, which seamlessly
and synergistically incorporates both negative and positive
taint inference methods. Using Joza and Wordpress as a
testbed, the paper shows that the hybrid approach is extremely
effective at thwarting SQL injection attacks on Web applications
without requiring developer effort and does so with negligible
performance overhead.

ACKNOWLEDGMENT

This research was supported by the Air Force Research
Laboratory (AFRL) contracts FA8650-10-C-7025 and FA8750-
13-2-0096, the U.S Department of Commerce (DOC) grant 01-
79-14214, and the Commonwealth Research Commercialization
Fund (CRCF) grant MF13-071-CS. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of AFRL, DOC,
CRCF, or the U.S. Government.

REFERENCES

[1] Anonymized-for-review. Taintless: Taint tracking and inference analysis
and breaking tool. In Black Hat USA, 2014.

[2] Anonymized-for-review. WP-SQLI-LAB: Wordpress SQL injection lab,
February 2014.

[3] A. Axelsen. Wordpress advanced search widget.
[4] S. Bandhakavi, P. Bisht, P. Madhusudan, and V. Venkatakrishnan.

Candid: preventing SQL injection attacks using dynamic candidate
evaluations. In Proceedings of the 14th ACM conference on Computer
and communications security, pages 12–24. ACM, 2007.

[5] S. W. Boyd and A. D. Keromytis. SQLrand: Preventing SQL injection
attacks. In Applied Cryptography and Network Security, pages 292–302.
Springer, 2004.

[6] M. Chartier. Wordpress wp-advanced-search plugin.

[7] E. Chin and D. Wagner. Efficient character-level taint tracking for java.
In Proceedings of the 2009 ACM Workshop on Secure Web Services,
SWS ’09, pages 3–12, New York, NY, USA, 2009. ACM.

[8] E. DB. oscommerce 2.3.3.4 (geo zones.php, zid param) sql injection
vulnerability.

[9] A. Futoransky, E. Gutesman, and A. Waissbein. A dynamic technique
for enhancing the security and privacy of web applications. Proc. Black
Hat USA, 2007.

[10] B. D. A. Guimaraes and M. Stampar. SQLmap, Februry 2014.
[11] V. Haldar, D. Chandra, and M. Franz. Dynamic taint propagation for

java. In Proceedings of the 21st Annual Computer Security Applications
Conference, pages 303–311, 2005.

[12] W. G. Halfond, A. Orso, and P. Manolios. Using positive tainting and
syntax-aware evaluation to counter SQL injection attacks. In Proceedings
of the 14th ACM SIGSOFT international symposium on Foundations of
software engineering, pages 175–185. ACM, 2006.

[13] W. G. Halfond, A. Orso, and P. Manolios. Wasp: Protecting web
applications using positive tainting and syntax-aware evaluation. Software
Engineering, IEEE Transactions on, 34(1):65–81, 2008.

[14] X. Hui. PECL PHP taint tracker.
[15] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions

and reversals. In Soviet physics doklady, volume 10, page 707, 1966.
[16] B. Livshits. Dynamic taint tracking in managed runtimes. Microsoft

Research Technical Report, 2012.
[17] B. Martin, M. Brown, A. Paller, D. Kirby, and S. Christey. 2011

CWE/SANS top 25 most dangerous software errors. Common Weakness
Enumeration, 7515, 2011.

[18] MITRE. Cve-2013-1453.
[19] MITRE. Cve-2014-3704.
[20] MITRE. Cve details (SQL injection).
[21] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans.

Automatically hardening web applications using precise tainting. Springer,
2005.

[22] A. Nguyen-Tuong, J. D. Hiser, M. Co, J. W. Davidson, and J. C. Knight.
To B or not to B: Blessing OS commands with software DNA shotgun
sequencing. In 10th European Dependable Computing Conference, 2014.

[23] I. Papagiannis, M. Migliavacca, and P. Pietzuch. PHP Aspis: using
partial taint tracking to protect against injection attacks. In 2nd USENIX
Conference on Web Application Development, page 13, 2011.

[24] Perl taint mode.
[25] Ruby taint feature.
[26] T. Pietraszek and C. V. Berghe. Defending against injection attacks

through context-sensitive string evaluation. In Recent Advances in
Intrusion Detection, pages 124–145. Springer, 2006.

[27] D. Ray and J. Ligatti. Defining code-injection attacks. In ACM SIGPLAN
Notices, volume 47, pages 179–190. ACM, 2012.

[28] R. Sekar. An efficient black-box technique for defeating web application
attacks. In NDSS, 2009.

[29] S. Son, K. S. McKinley, and V. Shmatikov. Diglossia: detecting code
injection attacks with precision and efficiency. In Proceedings of the
2013 ACM SIGSAC conference on Computer & communications security,
pages 1181–1192. ACM, 2013.

[30] TC.K. Wordpress advance wp query search filter plugin.
[31] TC.K. Wordpress ultimate wp query search filter plugin.
[32] W. Techs. Historical trends in the usage of content management systems

for websites, February 2014.
[33] E. Ukkonen. Algorithms for approximate string matching. Information

and control, 64(1):100–118, 1985.
[34] A. van der Stock, J. Williams, and D. Wichers. Top 10 2007. Technical

report, OWASP, 2007.
[35] Verizon. The 2013 data breach investigations report. Technical report,

Verizon, 2013.

12

[36] G. Wassermann and Z. Su. Sound and precise analysis of web applications
for injection vulnerabilities. In ACM Sigplan Notices, volume 42, pages
32–41. ACM, 2007.

[37] E. Weatherwax. Modeling Secretless Security in N-variant Systems. PhD
thesis, University of Virginia, 2009.

[38] D. Wichers. Top 10 2013. Technical report, OWASP, 2013.
[39] J. Williams and D. Wichers. Top 10 2010. Technical report, OWASP,

2010.
[40] Wordpress.com. Wordpress.com posts statistics, 2014.
[41] Wordpress.com. Wordpress.com traffic statistics, February 2014.
[42] W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced policy enforcement: A

practical approach to defeat a wide range of attacks. In Proceedings of
the 15th USENIX Security Symposium, pages 121–136, 2006.

13

