Fast and flexible NIST level 2
hierarchical RBAC with jRBAC

Nowadays enterprise authorization is a tedious task, both for the enter-
prise developer and the administrator. A flexible and performance critical
authorization system, Specifically a u Based Access Control mechanism,
would be what many enterprises might benefit. This document discusses a
NIST hierarchical RBAC implementation with many features.

Keywords: jFramework, RBAC, SOL

Abbas Naderi
Shahid Beheshti University
abiusx@acm.org

1. Introduction

Role based access control is a very flexible
pattern of authorization, and has been used in
a variety of enterprises under a lot of stress.
Due to its separation of users and permis-
sions, flexibility is at hand.

In a RBAC system, there are three entities, a
user as the actor of the system, one or more
roles for every user, and a few permissions
assigned to every role. The most common
operation of a RBAC system would be to
check a permission against a wuser for
authorization.

With growing enterprises, either on the exter-
nal size (which is the physical size of the
organization) and internal size (as the com-
plexity of enterprise applications) more roles
are necessary for the system, hence many
more permissions. Management of a lot of
roles and permissions, and both user/role and
role/permission relations, Would be no easy
task for an administrator, if ever possible. For
example an organization with 500 users,
1000 roles and 50,000 permissions would
most likely have around 1,000,000 role/per-
mission relations which would require huge

resources for maintenance (and in most
scenarios would result in unsafe configura-
tion and many leaks). Thus, hierarchical
RBAC is defined to outwit the problem via
hierarchies, either as inheritance or
aggregation.

jFramework which is a PHP web application
framework developed around simplicity and
extensibility, implements a very fast and flex-
ible RBAC subsystem, namely jRBAC. This
article intends to cover implementation de-
tails criteria of this subsystem.

2. The Hierarchy

NIST RBAC standard consists of four incre-
mental levels. First level known as Flat
RBAC is not satisfactory for large scale enter-
prises as noted in previous section. Level 2
RBAC, named hierarchical RBAC, indicates
that only roles need to be hierarchical, either
in a tree/inverted tree or any hierarchical
structure.

Most implementations of hierarchical
RBACs usually deploy trees (or inverted
trees), since they are more identical to the
true world organizational structures, and are

much easier to manage both for the developer
and the administrator.

The key point missed in the NIST standard is
that roles are not very frequent (since they're
in correspondence with people and people
usually don't take many roles, each) yet per-
missions (each for an action or task) are nu-
merous. Due to the nature of this problem, it
would've been much wiser to force permis-
sion hierarchies with role hierarchy as an op-
tional benefit. JRBAC implements both roles
and permissions in hierarchies in a simple
and intelligent manner.

3. Dependencies

JRBAC is based on RDBMS and SQL, since
they are very commonly used in nowadays
platforms and applications. One might note
that SQLs are not the preferable choice for
embedded devices and low level applications
due to the requirement of a RDBMS server
setup on the platform. The solution lies in
SQLite, the almost new database technology
that resides in only a single file and requires
no database server but a tiny driver deployed
with the application. JRBAC has been tested
on both SQLite and MySQL in many opera-
tional situations and prevailed (more discus-
sion at Benchmark section)

The current version of jJRBAC is implement-
ed with PHP programming language, but has
but little PHP code and most of its code are
compatible SQL statements, so it can be port-
ed to any desired language with almost no ef-
fort. Also the implementation is part of the
jFramework PHP framework (www.jframe-
work.info) but only uses framework's plat-
form for database queries (which can be easi-
ly replaced to achieve independency).

For a flexible and performance critical imple-
mentation of hierarchies, The Nested Set hi-
erarchical model is used, which is a means of
managing hierarchical data fast and easy via
RDBMS tabular structure. In a Nested Set,
every row has two metadata fields namely
Left and Right instead of a parent key. These
fields are filled respectively based on the pre-

order and post-order traversal of the actual
tree. The modeling is wise since it allows us
to directly know children and descendants of
a node as well as perform batched operations
on all of them in a single SQL query.

4. Modeling

To see an organization in the eyes of a RBAC
subsystem, we should present a simple
modeling.

The first entity would be a User which is
equal to a virtual/real person inside the
organization. The user is considered au-
thentic and intends to perform some tasks in-
side the system, So RBAC should decide if
the user has the permission for it or not,
Hence the second entity would be a Permis-
sion which represents a ticket required to do
a single action.

Since permissions are not related to users di-
rectly, but on their role in the organization,
there comes a Role which is a node in the
organization structure. As in real world situa-
tions, A user might have one or more roles
assigned to him and a role might be assigned
to one or more users. Users change frequent-
ly (in compare with roles and permissions)
but roles remains quite the same over time,
with some additions.

A role has a set of permissions to do a set of
certain tasks. For example Role A might have
permissions to perform action M, N and role
B might have permissions to perform actions
N, O and P. The set of role/permission as-
signments also remains the same over time in
the organization (until a new role or permis-
sions is defined)

Since roles are hierarchical, if some user has
a role which is an ancestor of another role,
he/she would have the union of all descen-
dants' permissions. This is useful for defining
a general role with almost no permissions,
and defining sub-roles with appropriate per-
missions of all. The more general role would
be the logical supervisor of all the sub-roles,
thus having all their permissions.

Permissions are also hierarchical, but in and
inverse manner, i.e a general action is defined
as a permission, and it's then divided into
more atomic actions. If someone has the per-
missions to do the general action, he/she also
has the permission to do all the atomic sub-
actions which are descendants of the more
general task. This behavior helps both define
actions/permissions and assign them to roles,
e.g you won't need to assign all related atom-
ic permissions to a role, instead you assign
their parent action to the desired role.

The tabular representation of entities is as
simple as possible, yet not lacking basic fea-
tures, So we have ID, Title for roles and per-
missions and ID, Username for users. We
also have 2 MxN relation tables one for user/
role relations and the other for role/permis-
sion relations both as simple as possible
(with a unique pair of foreign keys).

The Roles table and Permissions table both
have have Left, Right fields for an effective
use of nested sets as well.

This modeling should be kept in mind for the
following sections of the article, since both
role and permission hierarchies could act dif-
ferently (inheritance instead of
specialization)

5. Operations
5.1 Check

The most frequently desired operation of a
RBAC system is to check a permission
against a user, called Check() from now on.
To check against a particular user, we need to
perform the following sub operations:

1. Acquire all direct roles of the user

2. Union all indirect roles of the user -
which are descendants of the direct roles
- with the acquired direct roles.

3. Acquire all permissions assigned to each
role in the set of roles from step 2.

SELECT COUNT(*) AS Result FROM

4. Union all the acquired permissions

5. Find all indirect permissions of the user
(which are ascendants of permissions
from step 4 inclusive)

6. Check the final list of permissions result-
ed from step 5 against the desired
permission.

This method is the first one that comes to
mind, But obviously not the best since the set
of items we have to keep in memory increas-
es exponentially by each step and we search
for a needle in a haystack at step 6, which is
definitely unwise. The following method
achieves the same goal with both fewer and
simpler steps:

1. Acquire all direct roles of the user

2. Union all indirect roles of the user -
which are descendants of the direct roles
- with the acquired direct roles.

3. Acquire all ascendant permissions of our
desired permission (inclusive)

4. Check to see if any of the roles in step 2
is assigned to any of the permissions in
step 3.

As one might notice, we union all descen-
dants of user roles to know all the roles and
sub-roles the user can act as, but we union all
ascendants of the desired permission since if
the user has permission for any of them, He/
she has the permission to perform the desired
action.

The trick lies in Meet-In-The-Middle
(MITM) concept, which significantly reduces
computational order of some NP algorithms.

The following SQL query performs the
whole algorithm in a single fast non-correla-
tive query against the database with User-
name and Permission Title as inputs :

“TableUsers™ AS TU

JOIN “TableUserRoles™ AS TUR ON (TU. UserID =TUR. UserID)

JOIN “TableRoles™ AS TRdirect ON (TRdirect. RoleID =TUR. RolelID)

JOIN “TableRoles™ AS TR

ON (TR. Left™ BETWEEN TRdirect. Left™ AND

JOIN
(

"TablePermissions™ AS TPdirect
JOIN "TablePermissions™ AS TP

ON (TPdirect. Left™ BETWEEN TP. Left™ AND
AS TRP

JOIN “TableRolePermissions®

TRdirect. Right™)

TP. Right’)

ON (TP. PermissionID =TRP. PermissionID)

) ON (TR. RoleID" = TRP. RoleID")
WHERE

TU. Username = {1}
AND

TPdirect. Title = {2}

It is quite obvious that we require to join all
five tables for a Check(), but there are two
more extra joins. These joins both employ
goals of the algorithm and ensure a non-cor-
relative query.

As described by the algorithm, first all direct
roles are acquired via joining Users, User/
Roles and Roles tables. Secondly, All indirect
roles are derived. Afterwards, All indirect
permissions packed (the parenthesis section)
and lastly, we check which of these permis-
sions are in assignment with those roles by
joining both with Role/Permissions table by
the condition of assignment.

The first extra join is applied on roles table
again, causing the resulting temporary table
to hold all indirect roles (i.e roles that are de-
scendant of direct roles inclusive), as well.

The second extra join (employed inside the
parenthesis) is applied on the permissions ta-
ble again, to acquire all ascendants of direct
permissions (i.e indirect permissions). As it
can be seen, This time the join condition is
"all permissions that direct permissions are
SELECT COUNT(C*) AS Result FROM
"TableRoles™ AS TR

between them", instead of when we acquired
descendant roles with the join condition "all
roles that are between direct roles".

Lastlyy, WHERE conditions of the desired
username and [direct] permission title are ap-
plied to end the query.

The result is the number of paths our user
reaches the desired permission. If more than
zero, the permission must be considered
granted and otherwise, access is denied.

5.2 RoleHasPermission

Sometimes -mostly in a virtual manner- the
subsystem is required to tell if a role has ac-
cess to a particular permission or not. This
scenario happens either when tuning Role/
Permission assignments or when batching in-
terfaces to present based on roles.

This operation is quite similar to the opera-
tion done in Check(), but is employed other-
wise to be more related to Nested Set con-
cepts and practices. In this query, the
necessary tables are joined and conditions are
applied with subqueries:

JOIN “TableRolePermissions™ AS TRP ON (TR. RoleID =TRP. RolelID)
JOIN “TablePermissions™ AS TP ON (TP. PermissionID"™ = TRP. PermissionID’)

WHERE
TR. Left™ BETWEEN

(SELECT "Left™ FROM “TableRoles™

WHERE "Title ™ = {1})

(SELECT "Right™ FROM “TableRoles™ WHERE "Title™ = {1})

AND
AND
TP. PermissionID” IN
C
SELECT Parent. PermissionID’
FROM

"TablePermissions™ AS Node,

"TablePermissions™ AS Parent
WHERE Node. Left™ BETWEEN Parent. Left™ AND Parent. Right"
AND Node. Title = {2}

ORDER BY Parent. Left®

);
This operation performs much faster than
Check() with less memory consumption,
since for every distinct role a user has,
Check() requires all its descendants to be
acquired - which forms an exponential
growth in number of available paths - but this
operation only needs descendants of a
particular role to be gathered. That is why
two wholly different approaches of SQL
query are used for these two similar
operations.

5.3 UserinRole

The third operation highly desired in a
RBAC subsystem is to check if a user has a
role or not, and is straightforward. Adminis-
trators often would like to present some re-
ports or any piece of information to a batch
of users under a certain role. Also reports and
statistics are generated based on roles a user
has performed. In these two category of
scenarios, Two different operations are re-
quired to determine if a user is in a role or
not. The former includes indirect user roles
as well, but the latter needs only direct user
roles.

Since we've already discussed two role de-
scendants scenario, the former UserInRole
case is omitted and the latter done as follows:

SELECT COUNT(C*) AS Result FROM
"TableUserRoles™ WHERE ‘“UserID = {1}
and “RoleID™ = {2}

If username and role title are presented, we
simply join those two tables as well.

6. Benchmark

7. Further Work

8. Conclusion

9. References

MySQL Dev : Managing hierarchical data in
MySQL (Nested Sets) http://dev.mysql.com/
tech-resources/articles/hierarchical-data.html

JRBAC Benchmark : Raw Results, Charts,
Tests and Environments http://wiki.jframe-
work.info/index.php?ti-
tle=RBAC_Benchmark

